Exercise 66

For the following exercises, use the table of values that represent points on the graph of a quadratic function. By determining the vertex and axis of symmetry, find the general form of the equation of the quadratic function.

x	-2	-1	0	1	2
y	1	0	1	4	9

Solution

Notice that the y-values are the same for $x=-2,0$. This means the axis of symmetry is $x=-1$. Start with the general formula of a quadratic function in vertex form.

$$
y=a(x-h)^{2}+k
$$

The y-value corresponding to $x=-1$ is 0 , so the vertex is ($-1,0$), which means $h=-1$ and $k=0$.

$$
\begin{aligned}
y & =a(x-(-1))^{2}+0 \\
& =a(x+1)^{2}
\end{aligned}
$$

Use any of the other points to determine a. For example, $y=1$ when $x=0$.

$$
\begin{gathered}
1=a(0+1)^{2} \\
1=a(1) \\
a=1
\end{gathered}
$$

Therefore, the quadratic function is

$$
\begin{aligned}
y & =(1)(x+1)^{2} \\
& =(x+1)^{2} \\
& =x^{2}+2 x+1 .
\end{aligned}
$$

